Influence of optical Kerr coefficient on photonic band structures of hexagonal-lattice function photonic crystals

Authors

  • Rezaei, B . Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran
  • Sedghi, A Department of Physics, Shabestar Branch, Islamic Azad University, Shabestar, Iran
Abstract:

In this paper, we have studied the photonic band structure of function photonic crystals in which the dielectric constant of the scattering centers (rods) is a function of space coordinates. The under-studied lattice is hexagonal and cross section of rods has a circular symmetry embedded in the air background. Photonic band structures for both electric and magnetic polarizations of the electromagnetic waves are calculated. The obtained results show the existence of the forbidden frequency region (photonic band gap). It is considered that the dielectric rods are made of the Kerr type materials. Therefore, by considering different distributions of light intensity, different function forms will be obtained for the dielectric constants of rods, which are called function photonic crystals. The influence of the function coefficient (corresponding to the Kerr coefficient) on photonic band structures has been theoretically investigated. The results show that the width and number of photonic band gaps are more controllable than the conventional photonic crystals. These results can be very useful in designing the optical devices.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Band structures for nonlinear photonic crystals

Powered by TCPDF (www.tcpdf.org) This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print cop...

full text

Band structure calculation in two-dimensional Kerr-nonlinear photonic crystals

Using the finite-difference time-domain method, based on the numerical simulation of oscillating dipole radiation, we analyze band structures in two-dimensional Kerr-nonlinear photonic crystals. This method is more thorough at calculating band structures in two-dimensional Kerr-nonlinear photonic crystals than approaches proposed earlier. We find that the band structures calculated for both TE ...

full text

Wideband Dispersion Compensation in Hexagonal Lattice Photonic Crystal Fiber

In this paper, a new structure is provided for the dispersion compensating photonic crystal fibers in order to broaden the chromatic dispersion and increase the dispersion compensating capability in a wide wavelength range. In the structure, putting elliptical holes in the first ring of the inner core clad of a dispersion compensating fiber of the hexagonal lattice, increases the wavelength ran...

full text

Finite-difference time-domain analysis of band structures in one-dimensional Kerr-nonlinear photonic crystals

We present a new approach for analyzing band structures in one-dimensional Kerr-nonlinear photonic crystals. It combines the finite-difference time-domain method, based on the numerical simulation of oscillating dipole radiation, with the Kerr-nonlinear model. The approach is applied to analyze the band structures in Kerr-nonlinear one-dimensional photonic crystals as a function of the intensit...

full text

Band Structures for 2D Photonic Crystals in Presence of Nonlinear Kerr Effect ‎Calculated by Use of Nonlinear Finite Difference Time Domain (NFDTD) Method‎

We report the simulation results for impact of nonlinear Kerr effect on band structures of a ‎two dimensional photonic crystal (2D-PhC) with no defect, a PhC based W1-waveguide ‎‎(W1W), and also Coupled-Cavity Waveguides (CCWs). All PhC structres are assumed to a ‎square lattice of constant a made of GaAs rods of radius r=0.2a, in an air background. The ‎numerical simulation was performed using...

full text

Improvement of Optical Properties in Hexagonal Index-guiding Photonic Crystal Fiber for Optical Communications

Waveguides with low confinement loss, low chromatic dispersion, and low nonlinear effects are used in optical communication systems. Optical fibers can also be employed in such systems. Besides optical fibers, photonic crystal fibers are also highly suitable transmission media for optical communication systems. In this paper, we introduce two new designs of index-guiding photonic crystal fiber ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 19  issue 3

pages  503- 513

publication date 2019-12

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023